Références

- Ben Amara, M., Vlasse, M., Le Flem, G. & Hagenmuller, P. (1983). Acta Cryst. C39, 1483–1485.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harrison, W. T. A., Gier, T. E. & Stucky, G. D. (1995). Acta Cryst. C51, 181-183.
- Jaulmes, S., Wallez, G., Elfakir, A. & Quarton, M. (1992). C. R. Acad. Sci. Paris, Sér. II, 315, 941–945.
- Jaulmes, S., Wallez, G., Elfakir, A. & Quarton, M. (1993). Eur. J. Solid State Inorg. Chem. 30, 1007–1015.
- Macicek, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Masse, R. & Durif, A. (1988). J. Solid State Chem. 73, 468-472.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.
- Smith, J. V. (1988). Chem. Rev. 88, 148-182.
- Tran Qui, D. & Hamdoune, S. (1987). Acta Cryst. C43, 397-399.

Acta Cryst. (1997). C53, 5-7

NaInAs₂O₇

WAHID BELAM, AHMED DRISS ET TAHAR JOUINI

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisie. E-mail: kamel.benrhouma@cck.rnrt.tn

(Reçu le 28 mai 1996, accepté le 24 juillet 1996)

Abstract

The structure of the title compound, sodium indium diarsenate(4–), consists of corner-sharing InO_6 octahedra and As_2O_7 groups. Layers of the InO_6 octahedra and layers of the diarsenate groups stack alternately parallel to [010]. The framework delimits cages where four Na^+ cations per unit cell are located. The structure is closely related to that of $NaFeP_2O_7$ -II, but crystallizes in a different space group.

Commentaire

Les nombreux travaux consacrés ces quinze dernières années aux diphosphates de formulation $A^{I}M^{III}P_2O_7$ $(A^{I} = alcalin, Tl, Ag; M^{III} = Al, Ti, V, Fe, Ga, Mo,$ In, terre rare), ont conduit à mettre en evidence cinq types cristallographiques. Nous avons récemment établi la structure de l'un d'eux KYP₂O₇ (Hamady, Zid & Jouini, 1994), puis mis en évidence un sixième type dans NaYP₂O₇ (Hamady & Jouini, 1996). En revanche, les diarséniates de formulation analogue ont fait l'objet de moins d'investigations. On relève dans la bibliographie LiFeAs₂O₇ (Wang, Wu & Liu, 1994) dont la structure est étroitement reliée à celle de LiFeP₂O₇ (Riou, Nguyen, Benloucif & Raveau, 1990) et de NaAlAs₂O₇ (Driss & Jouini, 1994), cette dernière étant isotype de NaFeAs₂O₇-II (d'Yvoire & Screpel, 1974) et de (K,Rb,Cs,Tl)AlAs₂O₇ (Boughzala, Driss & Jouini, 1993).

La phase étudiée (Fig. 1) à une structure à charpente anionique tridimensionnelle formée d'octaèdres InO₆ et de groupements diarséniates As_2O_7 disposés respectivement en couches alternées, parallèles à (Ī01), liées au moyen de ponts In—O—As. Aucune connexion n'est établie entre polyèdres d'une même couche à l'exception du pont As—O—As du groupement As_2O_7 . Tous les atomes d'oxygène sont mis en commun. Par conséquent chaque octaèdre est entouré par six tétraèdres dont quatre appartiennent à des groupements diarséniate différents, les deux autres appartenant à un même groupement diarséniate. Et chaque groupement diarséniate est associé à cinq octaèdres et se trouve engagé dans six liaisons de type As—O—In dont deux avec un même octaèdre.

Fig. 1. Projection selon [101] de la structure de NaInAs₂O₇.

Cette charpente délimite des cages où logent les cations Na⁺. Les cages communiquent entre elles par d'étroites fenêtres normales aux directions [111] et $[1\overline{1}1]$.

Le diphosphate NaInP₂O₇ (Gabélica-Robert & Tarte, 1982), isotype de NaFeP₂O₇-II, groupe d'espace $P2_1/c$, présente, malgré cette différence de symétrie, une structure étroitement reliée à celle de NaInAs₂O₇.

Partie expérimentale

Cette phase a été obtenue sous forme de monocristaux à partir des réactifs NaOH, In₂O₃ et H₃AsO₄ (80%) pris dans les rapports molaires (Na:In:As = 1:0,007:2). Le mélange obtenu est chauffé pendant trois heures à 1123 K puis refroidi lentement (60 K h^{-1}) jusqu'à 968 K. Après 12 h de chauffe, une trempe à la température ambiante suivie de lavages successifs à l'eau bouillante libère des cristaux incolores de forme rhomboédrique.

Données cristallines	
NaInAs ₂ O ₇	Mo $K\alpha$ radiation
$M_r = 799,30$	$\lambda = 0.71069 \text{ Å}$
Monoclinique	Paramètres de la maille à
C2/c	l'aide de 25 réflexions
a = 10,241 (4) Å	$\theta = 12 - 16^{\circ}$
b = 8,649 (3) Å	$\mu = 15,549 \text{ mm}^{-1}$
c = 13,848 (5) Å	T = 293 (2) K
$\beta = 109.93 (3)^{\circ}$	Rhomboédrique
V = 1153,2 (7) Å ³	$0,072 \times 0,072 \times 0,036$ mm
Z = 4	Incolore
$D_x = 4,604 \text{ Mg m}^{-3}$	
D_m non mesurée	

Collecte des données

Diffractomètre CAD-4
Balayage ω
Correction d'absorption:
empirique via balayage
ψ (North, Phillips &
Mathews 1968)
$T_{\rm min} = 0.47, \ T_{\rm max} = 0.57$
1075 réflexions mesurées
1007 réflexions
indépendantes

Affinement

Affinement à partir des F^2 $R[F^2 > 2\sigma(F^2)] = 0.0377$ $wR(F^2) = 0,1011$ S = 1,1231007 réflexions 66 paramètres $w = 1/[\sigma^2(F_o^2) + (0.0344P)^2$ + 83.5232Poù $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.521$ $\Delta \rho_{\rm max} = 1,18 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1,67 \ {\rm e} \ {\rm \AA}^{-3}$

Rhomboédrique $0,072 \times 0,072 \times 0,036$ Incolore	
770 - 49	
$[I > 2\sigma(I)]$ $R_{int} = 0.0155$	5
$ \theta_{\text{max}} = 24,93^{\circ} $ $ h = 0 \rightarrow 12 $	
$k = 0 \rightarrow 10$ $l = -16 \rightarrow 15$ 1 réflevien de référence	
fréquence: 120 min variation d'intensité:	
0,15%	

Correction d'extinction: SHELXL93 (Sheldrick, 1993) Coefficient d'extinction: 0,00016 (9) Facteurs de diffusion des International Tables for Crystallography (1992, Tome C, Tableaux 4.2.6.8 et 6.1.1.4)

Tableau 1. Coordonnées atomiques et facteurs d'agitation thermique isotrope équivalents ($Å^2$)

$$U_{\text{éq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	z	$U_{\acute{e}a}$
Asi	0,33190(11)	0,57944 (13)	0,13403 (9)	0,0046 (3)
As2	0,12312(11)	0,45795 (14)	-0,07648(9)	0,0054 (3)
In	0,13978 (9)	0,26712(11)	0,14112(7)	0.0129 (3)
Na	0,0961 (5)	0,8598 (6)	0,1182 (4)	0.0217 (12)

01 0,3028 (8) 0,7289 (10) 0,1989 (6) O2 03

0,3231 (8)	0,4038 (10)	0,1807(6)	0,009(2)
0,4787 (8)	0,5978 (9)	0,1073 (6)	0.009(2)
0,1949 (8)	0,5999 (9)	0,0178 (6)	0.007(2)
0.0232 (8)	0.4628 (10)	0,1496 (6)	0.011 (2)
0,2414 (8)	0,4297 (9)	-0,1319(6)	0.008 (2)
0.0921 (8)	0,3002 (10)	-0,0188(6)	0,011 (2)

0.009(2)

Tableau 2. Paramètres géométriques (Å, °)

As1-O1	1,659 (8)	In—O6 [™]	2,121 (8)
As1-O2	1,665 (8)	In—O2	2,126 (8)
As1-O3	1,674 (8)	In03**	2,135 (8)
As1-04	1,747 (8)	Na—O1	2,323 (9)
As2O5'	1,645 (8)	Na—O3`	2,362 (10)
As2—O6	1,659 (8)	Na—O7'	2,391 (10)
As2—07	1,666 (8)	Na—O6 ^{vi}	2,430 (10)
As2—O4	1,760 (8)	Na—O2 ^{vii}	2,648 (10)
In—05	2,097 (8)	Na—O3 ^{vi}	2,974 (10)
In—O1"	2,115 (8)	Na—O4	2,996 (10)
In—O7	2,118 (8)		
01As102	117,2 (4)	O7—As2—O4	108,4 (4)
01As103	112,8 (4)	O5—In—O1"	91,6(3)
O2As1O3	110,1 (4)	O5—In—O7	91,0(3)
01—As1—04	100,6 (4)	O1"—In—O6"	88,7 (3)
O2—As1—O4	108,5 (4)	O7—In—O6'''	88,7 (3)
O3—As1—O4	106,6 (4)	O5—In—O2	90,4 (3)
O5'-As2-O6	115.6 (4)	O7—ln—O2	93.6 (3)
O5'As207	110,7 (4)	O6 ¹¹¹ —In—O2	89,3 (3)
O6—As2—O7	113,0 (4)	O1"—In—O3"	92,4 (3)
O5 ⁱ —As2—O4	103,2 (4)	07ln03"	88,7 (3)
O6—As2—O4	105,0 (4)	As1-04-As2	127,9 (5)

02—As1—As2—07 11,8 (4) O3—As1—As2—O6 8,5 (4) Codes de symétrie: (i) -x, 1 - y, -z; (ii) $\frac{1}{2} - x$, $y - \frac{1}{2}$, $\frac{1}{2} - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} - y, -z;$ (iv) $x - \frac{1}{2}, y - \frac{1}{2}, z;$ (v) $x - \frac{1}{2}, \frac{1}{2} + y, z;$ (vi) $\frac{1}{2} - x, \frac{3}{2} - y, -z;$ $(vii) \frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z.$

La largeur du balayage de type ω est $(0,79 + 0,78 \text{tg}\theta)^\circ$. Les corrections de Lorentz-polarization ont été effectuées.

Collecte des données: CAD-4 EXPRESS (Duisenberg, 1992; Macicek & Yordanov, 1992). Affinement des paramètres de la maille: CAD-4 EXPRESS. Réduction des données: MolEN (Fair, 1990). Programme(s) pour la solution de la structure: SHELXS86 (Sheldrick, 1990). Programme(s) pour l'affinement de la structure: SHELXL93 (Sheldrick, 1993). Graphisme moléculare: ORTEP (Johnson, 1990). Logiciel utilisé pour préparer le matériel pour publication: SHELXL93.

Les listes des facteurs de structure et des facteurs d'agitation thermique anisotrope ont été déposées au dépôt d'archives de l'UICr (Référence: DU1163). On peut en obtenir des copies en s'adressant à: The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Références

- Boughzala, H., Driss, A. & Jouini, T. (1993). Acta Cryst. C49, 425-427.
- Driss, A. & Jouini, T. (1994). J. Solid State Chem. 112, 277-280. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, Les Pays-Bas.
- Gabélica-Robert, M. & Tarte, P. (1982). Stud. Inorg. Chem. 3, 475-478
- Hamady, A. & Jouini, T. (1996). Acta Cryst. C52. 2949-2951.
- Hamady, A., Zid, M. F. & Jouini, T. (1994). J. Solid State Chem. 113, 120-124.
- Johnson, C. K. (1990). ORTEP. Molecular Graphics Program. Oak Ridge National Laboratory, Tennessee, EU.

 $\Omega 4$

05

06 07

In-In— In-01-01-O2-

01- $0^{2}-$ O3-

O5ⁱ-06-

O5ⁱ-

Macicek, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

- Riou, D., Nguyen, N., Benloucif, R. & Raveau, B. (1990). Mater. Res. Bull. 25, 1363–1369.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Université de Göttingen, Allemagne.
- Wang, S.-L., Wu, C.-H. & Liu, S.-N. (1994). J. Solid State Chem. 113, 37-40.
- d'Yvoire, F. & Screpel, M. (1974). Bull. Soc. Chim. pp. 1211-1214.

Acta Cryst. (1997). C53, 7-9

Tetraammonium Hexahydrogenhexamolybdozincate(II) Hexahydrate

CHRISTINE C. ALLEN,^{*a*} ROBERT C. BURNS,^{*a*} GEOFFREY A. LAWRANCE,^{*a*} PETER TURNER^{*b*} AND TREVOR W. HAMBLEY^{*b*}

^aDepartment of Chemistry, University of Newcastle, Callaghan, NSW, Australia 2308, and ^bSchool of Chemistry, University of Sydney, Sydney, NSW, Australia 2006. E-mail: csrb@paracelsus.newcastle.edu.au

(Received 22 May 1996; accepted 9 September 1996)

Abstract

The title compound, $(NH_4)_4(H_6ZnMo_6O_{24}).6H_2O$, exhibits a structure with six MoO₆ octahedral edgesharing units surrounding a central ZnO₆ octahedron, with all metal atoms in a common plane. The average Zn—O distance is 2.081 (5) Å, while the average Mo— O distances are 2.240 (15), 1.946 (11) and 1.711 (12) Å for four-, two- and single-coordinate O atoms, respectively.

Comment

As part of our studies of the structures and types of heteroatoms found for heteropolymolybdates and tungstates, we have examined the structure of $(NH_4)_4(H_6ZnMo_6O_{24}).6H_2O$. The structure consists of an $(H_6ZnMo_6O_{24})^{4-}$ anion, NH_4^+ cations and water molecules. The anion has the standard Anderson structure (Anderson, 1937), with six MoO₆ octahedral edgesharing units surrounding a central ZnO₆ octahedron and all metals in a common plane [the maximum deviation from the least-squares plane is 0.025(1)Å]. The Zn atom is located at an inversion centre and the ZnO₆ octahedron is trigonally distorted, with Zn-O distances of 2.074 (7)-2.088 (7) Å [average 2.081 (5) Å]. Six nonacidic H atoms attached to the central O atoms surrounding the Zn atom are assumed to be present, as is typical of low oxidation state heteroatoms incorporated into the

Anderson structure, such as Na₃(H₆CrMo₆O₂₄).8H₂O (Perloff, 1970). All Mo—O distances are comparable with those found in other (H₆XMo₆O₂₄)^{*n*-} ions, where $X = Co^{II}$ (Nolan, Burns & Lawrance, 1996), Cu^{II} (Ito, Ozeki, Ichida, Miyamae & Sasaki, 1989), Cr^{III} (Perloff, 1970), Co^{III} (Nagano, Lee, Ichida & Sasaki, 1990), Al^{III} (Lee, Park, Lee & Ichida, 1991) and Rh^{III} (Ozawa, Hayashi & Isobe, 1991). The sum of the bond valences around Mo1, Mo2 and Mo3 are 6.04, 6.06 and 5.96, respectively (Brown & Altermatt, 1985).

It should be noted that the choice of one ammonium N-atom position is different to that reported for the isomorphous Cu^{II} compound, (NH₄)₄(H₆CuMo₆O₂₄),4H₂O (Ito et al., 1989). In the latter, only four molecules of water were considered as being present, with two water O-atom sites having 0.5 occupancy. It is interesting, therefore, that one of the partly occupied water O-atom sites in the structure of the Cu^{II} compound corresponds to the location of an N atom in the present structure. Although some doubt must remain as to the location of the N atoms, it should be noted that the average $N \cdots O$ distance in the present structure is 2.96 Å, similar to the average N...O distance of 3.06 Å in $(NH_4)_6(Mo_7O_{24}).4H_2O$, for which the N and O atoms were unequivocally located (Evans, Gatehouse & Leverett, 1975).

Fig. 1. The anion in $(NH_4)_4(H_6ZnMo_6O_{24}).6H_2O$, indicating the labelling of the non-H atoms. Displacement ellipsoids are shown at the 50% probability level.

Experimental

The title compound was prepared according to Nomiya, Takahashi, Shirai & Miwa (1987). The resulting solution was allowed to stand for several days and produced small colourless plate-shaped crystals.

Crystal data

 $(NH_4)_4(H_6ZnMo_6O_{24}).6H_2O$ Cu $K\alpha$ radiation $M_r = 1211.32$ $\lambda = 1.54178$ Å